Nutrient Mining Genes

ScienceDaily (Feb. 21, 2010) — Scientists from the John Innes Centre and the University of Oxford have discovered which genes control the specialized nutrient mining machine that develops on the surface of plant roots.

Root hairs develop on roots and burrow into the soil releasing acids and other scouring chemicals that crack open rocky minerals releasing valuable nutrients such as iron and phosphate that are necessary for plant growth.

It has long been known that when crops such as barley and wheat are grown on soils containing small amounts of phosphate, those plants with long hairs give higher yields than those with short hairs.

Similarly long-haired beans grown on nutrient poor tropical soils of Central America do much better than short haired varieties.

The mechanism that controls the growth of these nutrient excavating cells has eluded scientists until now. A group of UK-based scientists shed light on the mystery in a paper just published in Nature Genetics.

They discovered that a master regulatory gene called RSL4 acts like a switch; hair cells grow when the gene is turned on and growth stops when it is off.

When plants grow in conditions where there is insufficient phosphate they develop very long root hairs. This increases the amount of soil from which they can scavenge phosphate.

“When we discovered that RSL4 was a master regulator of hair growth we thought that perhaps the increased growth of root hairs in low phosphate soils might result from turning this gene on,” says Professor Liam Dolan, leader of the JIC team that discovered RSL4.

Dolan and co-workers were right. Growing plants in phosphate-poor soils turned the gene on resulting in the growth of very long root hairs. This gene is therefore not only a key growth regulator but also a critical cog in the mechanism plants use to cope with a lack of nutrients.

Given the ability of RSL4 increase root hair growth this discovery has the potential to help breeders develop crops that can grow on poor soils.

Most soils in Australia, extensive regions of sub-Saharan Africa and 30 per cent of China are not productive because plants cannot extract sufficient phosphate and iron form these soils.

“Our hope is that in the future someone will be able to use this gene to develop cultivars which enhance yields on poor soils,” says Professor Dolan. “This could have obvious benefits for developing world agriculture. Also as fertilizers become increasingly expensive we will need crops that are more efficient in nutrient uptake. This could have the added benefit of decreasing the amount of polluting phosphate that runs off into rivers and lakes.”

“What excites me most about this research is that we set out to answer a fundamental question in biology — how organisms control the size of their cells. In the end we discovered something that could have an important impact on world agriculture.”

13 thoughts on “Nutrient Mining Genes”

  1. I have been reading your blog for the last couple of hours, and it all has been very informative and well written. I just wanted to tell you that for some reason this post doesn’t seem to work with Internet Explorer. On a side note, I was wondering if you wanted to swap blogroll links? My website is Router Table Plans if you’re interested. I hope to hear from you soon!

  2. Thankx…. I try hard to make it both informative and interesting… The humor part is important, too. We all need more humor in our lives.

  3. Very interesting post thank you for writing it I have added your website to my favorites and will be back 🙂 By the way this is off topic but I really like your web page layout.

  4. Thanks for posting this info. I just want to let you know that I just check out your site and I find it very interesting and informative. I can’t wait to read lots of your posts. . . .

  5. I thought it was going to be some boring old site, but I’m glad I visited. I will post a link to this page on my blog. I believe my visitors will find that very useful. Thanks!

  6. Great! This article is creative, there are a Whole lot of new Notion,it gives me inspiration. I Believe I will also inspired by you.

  7. Hi. I wanted to drop you a quick note to express my thanks. I have been following your blog for a month or so and have picked up a heap of good information.

Comments are closed.